Surigao City Campus

# SURIGAO STATE COLLEGE OF TECHNOLOGY



# **IMPLEMENTATION**

I.1. The Dean or official concerned approves the updated syllabus for each subject.



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 1 of 10           |

#### COLLEGE OF ENGINEERING AND INFORMATION TECHNOLOGY

City Campus SecondSemester, Academic Year 2021-2022

Outcomes Based-Education (OBE) Syllabus in EE 431
Power Systems Analysis
Course Credit: 4.0 units (108hrs)

Institutional Vision, Mission, and Goals

Vision:

An innovative and technologically-advanced State College in Caraga.

#### Mission:

To provide relevant,

- a. high quality and sustainable instruction,
- b. research, production and extension programs and
- c. services within a culture of credible and responsive institutional governance.

#### Goals:

- 1. Foster application of the discipline and provide its learner with industry-based training and education particularly in engineering, technology and fisheries.
- 2. Conduct and utilize studies for the development of new products, systems and services relevant to Philippine life and of the global village.
- 3. Promote transfer of technology and spread useful technical skills, thus empowering its learners and their activities.

SSCT Core Values

Service-Oriented

Socially Responsive

Committed

Transformational

**SSCT Quality Policy** 

Surigao State College of Technology provides quality instruction, research, extension programs and production services to satisfy its customers by responding to their needs and expectations and continually improving its quality management system.



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 2 of 10           |

### Institutional Graduate Attributes (IGA)

- Visionary Leader
- Effective Communicator
- Competent Technologist
- Self-Directed Lifelong Learner

**Program Goals** 

The Electrical Engineering program aims to design and apply the generation, transmission, and distribution of electrical energy to produce competent engineers that exhibit positive work ethics and flexibility in work conditions for the development of Caraga.

ProgramEducational Objectives (PEO) and Relationship to Institutional Mission

|                                                                                                                                                                       |   | Mission |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|---|
| Program Educational Objectives (PEO)                                                                                                                                  | а | b       | С |
| EE-PEO1. Demonstrate professionalism in electrical engineering and apply professional ethics thru communication and collaboration.                                    | 1 | 1       | 1 |
| EE-PEO2. Use appropriate techniques, resources, and modern tools necessary for analysis, design, and modeling of complex electrical systems                           | 1 | /       | 1 |
| EE-PEO3. Plan, lead, and implement designated tasks, interact with other engineering professionals, and take leadership roles in electrical engineering organization. | 1 | 1       | 1 |
| EE-PEO4. Engage in lifelong learning able to discover new opportunities for continuing personal and professional development in electrical engineering                | 1 | /       | 1 |

Program Outcomes (PO) and Relationship to Program Educational Objectives (PEO)

| Program Outcomes (PO)                                                                    |   | rogram E<br>Objectiv |   |   |
|------------------------------------------------------------------------------------------|---|----------------------|---|---|
|                                                                                          | 1 | 2                    | 3 | 4 |
| EE-POa.Apply knowledge of mathematics and sciences to solve complex engineering problems | 0 |                      |   |   |
| EE-POb.Develop and conduct appropriate experimentation, analyze and interpret data       |   |                      |   |   |
| EE-POc.Design a system, component, or process to meet desired needs within               | 1 | 1                    | 1 | 1 |



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 3 of 10           |

| realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability, in accordance with standards        |   |   |   |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| EE-POd.Function effectively on multi-disciplinary and multi-cultural teams that establish goals, plan tasks, and meet deadlines                                                  |   |   |   |   |
| EE-POe.Identify, formulate, and solve complex problems in electrical engineering                                                                                                 | 1 | 1 | 1 | 1 |
| EE-POf.Recognize ethical and professional responsibilities in engineering practice                                                                                               |   |   |   |   |
| EE-POg.Communicate effectively with a range of audiences                                                                                                                         | 1 | 1 | 1 | 1 |
| EE-POh.Understand the impact of engineering solutions in a global, economic, environmental, and societal context                                                                 |   |   |   |   |
| EE-POi.Recognize the need for additional knowledge and engage in lifelong learning                                                                                               |   |   |   |   |
| EE-POj.Articulate and discuss the latest developments in the field of electrical engineering                                                                                     | 1 | 1 | 1 | 1 |
| EE-POk.Apply techniques, skills, and modern engineering tools necessary for electrical engineering practice                                                                      | 1 | 1 | 1 | 1 |
| EE-POI.Demonstrate knowledge and understanding of engineering and management principles as a member and/or leader in a team to manage projects in multidisciplinary environments |   |   |   |   |

Course Description

**DACUM Main Duties (DMD)** 

This course deals with the study on the basic structure of power systems, recent trends and innovations in power systems, transmission line parameters, network modeling and calculations, load flow studies, short circuit calculations and use of computer software for simulation.

EE-DMD1. Diagnose electrical problems using the electrical diagrams or blue print (as built electrical plans)

EE-DMD2. Install, repair, and maintenance electrical power systems( building wiring, controls, electrical machines and transformers)

EE-DMD3. Facilities Manager

EE-DMD4. Power Plant Manager

EE-DMD5. Electrical Researchers, Professor and Faculty



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

"For Nation's Greater Heights"

Course Outcomes (CO) and Relationship to Program Outcomes (PO)

Page No. 4 of 10

| Program Outcome (PO) /Level                                                                                                                                             | Course Outcomes (CO)                                                                                                                      | Assessment Task (CO-AT)                                                                                                           |   | DA | CUM Li | inks |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---|----|--------|------|---|
|                                                                                                                                                                         |                                                                                                                                           |                                                                                                                                   | 1 | 2  | 3      | 4    | 5 |
| EE-POc(Enabling).Design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, | EE431-CO1: Design and Create computational models for analysis power systems and able to understand per unit system.                      | power system.                                                                                                                     | 1 |    | 1      | 1    | 1 |
| health and safety,<br>manufacturability, and<br>sustainability, in accordance<br>with standards.                                                                        |                                                                                                                                           | Criteria – Functionality and lab report  Total Points: 100 points                                                                 |   |    |        |      |   |
| EE-POe(Enabling). Identify, formulate, and solve complex problems in electrical engineering.                                                                            | EE431-CO2: Calculate complex electrical engineering problems related to mathematical description and use of symmetrical component theory. | symmetrical component                                                                                                             | 1 |    |        |      |   |
| EE-<br>POg(Enabling).Communicate<br>effectively with a range of<br>audiences                                                                                            | EE431-CO3: Communicate effectively with the team, group or other range of audiences when conducting reports and presentations.            | Students create a design and present them in the class.  Criteria – creativity, functionality, delivery  Total Points: 100 points |   |    | /      | 1    | / |
| EE-POj.(Enabling).Articulate<br>and discuss the latest<br>developments in the field of                                                                                  | EE431-CO4:Discuss and articulate with the team or group the latest                                                                        | discuss the power system                                                                                                          |   |    | 1      | 1    | 1 |



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 5 of 10           |

| electrical engineering                                                                                                      | developments in the power system.                                                                                                   | Criteria - functionality and delivery  Total Points: 100 points                                                                                                                              |   |   |   |   |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|---|
| EE-POk.(Demonstrates). Apply techniques, skills, and modern engineering tools necessary for electrical engineering practice | EE431-CO5:Apply simulation tools to perform comprehensive short circuit studies, load flow studies, and optimal power flow studies. | Students conduct electrical engineering simulations. These simulations serve as a group activity where they will analyze and design a power system.  Criteria – Functionality and lab report | 1 | 1 | 1 | / |
|                                                                                                                             |                                                                                                                                     | Total Points: 100 points                                                                                                                                                                     |   |   |   |   |

Course Outcomes (CO) and Relationship to Intended Learning Outcomes (ILO)

| Course Outcomes (CO)                                                                                                              | Intended Learning Outcomes (ILO)                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| EE431-CO1: Design and Create computational                                                                                        | EE431-ILO1: Define the basic concepts of Power system                                                                |
| models for analysis power systems and able to understand per unit system.                                                         | analysis, power system units, and power system elements and calculate problems utilizing these concepts.             |
| EE431-CO2: Calculate complex electrical engineering problems related to mathematical description and use of symmetrical component | EE431-ILO2: Analyze power system operation and stability control.                                                    |
| theory.                                                                                                                           | EE431-ILO3: Apply modelling of generators, transformers, lines and cables in positive, negative, and zero sequence   |
| EE431-CO3: Communicate effectively with the team, group or other range of audiences when                                          | systems.                                                                                                             |
| conducting reports and presentations.                                                                                             | EE431-ILO4: Analyze and use power system models based on nodal admittance and impedance matrices for the analysis of |
| EE431-CO4:Discuss and articulate with the team or group the latest developments in the power                                      | large-scale power networks.                                                                                          |



# Republic of the Philippines

# SURIGAO STATE COLLEGE OF TECHNOLOGY

Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 6 of 10           |

"For Nation's Greater Heights"

| system |
|--------|
|--------|

EE431-CO5:Apply simulation tools to perform comprehensive short circuit studies, load flow studies, and optimal power flow studies.

EE431-ILO5: Describe the behaviors of inductors and capacitors when combined in parallel and series.

### EE431-ILO6:

Understand Positive Sequence, Negative & zero sequence system and fault analysis.

### **Detailed Course Content**

| Intended Learning<br>Outcomes<br>(ILO)                                                                                                                                                | Topics                                                                                                                                                                                 | Time<br>Frame                       | Teaching and<br>Learning<br>Activities(TLA) | Assessment<br>Tasks<br>(ILO-AT)                                 | Target                                                              | Resources                                                                          | Values<br>Integration                                                                                    | Remarks |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------|
| EE431-ILO1: Define the basic concepts of Power system analysis, power system units, and power system elements and calculate problems utilizing these concepts. (EE431-CO3, EE431-CO4) | 1. Elements of Power System Analysis 1.1. Fundamentals of Power Systems 1.2. Line Constants calculation 1.3. Capacitance of Transmission lines 1.4. Circuit Elements 1.5. Applications | 9.0 hrs.<br>lec                     | Learning Module 1 Asynchronous              | Problem solving quiz on the elements of power system analysis.  | 70% of the<br>students<br>shall have<br>a rating of<br>at least 3.0 | Modules, e-<br>books,<br>textbooks,<br>and<br>worksheets                           | Core Value: Committed  Sub-Value: Determined in learning the basic concepts of electric circuits         |         |
| EE431-ILO2: Analyze power system operation and stability control. (EE431-CO1, EE431-CO2, EE431-CO5)                                                                                   | 2. Economic operation of power systems  2.1. Performance of Lines  2.2. High Voltage DC Transmission  2.3. Corona                                                                      | 9.0<br>hrs.lec/<br>10.0 hrs.<br>lab | Learning Module 2<br>Asynchronous           | Problem solving quiz on the Economic operation of power system. | 70% of the<br>students<br>shall have<br>a rating of<br>at least 3.0 | Videos online,<br>modules, e-<br>books,Multisi<br>m software,<br>and<br>worksheets | Core Value: Committed  Sub-Value: Determined in learning the basic laws to solve basic electric circuits |         |



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

FM-SSCT-ACAD-002 00 20 September 2018 7 of 10

"For Nation's Greater Heights"

| Tes Nation's Greater Hights  EE431-ILO3: Apply modelling of generators, transformers, lines and cables in positive, negative, and zero sequence systems. (EE431-CO1, EE431-                                  | 3. Modelling power system components 3.1. Mechanical Design of Transmission Lines                 | 9.0<br>hrs.lec./<br>15.0 hrs.<br>lab | Learning Module 3 Asynchronous    | Designing a power system models.                               | 70% of the<br>students<br>shall have<br>a rating of<br>at least 3.0 | Videos online,<br>modules, e-<br>books,Multisi<br>m software,<br>and<br>worksheets | Core Value: Committed Sub-Value: Dedicated in solving linear electrical                          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|
| CO2, EE431-CO5)                                                                                                                                                                                              | <ul><li>3.2. Overhead Line Insulators</li><li>3.3. Insulated Cables</li></ul>                     |                                      |                                   |                                                                |                                                                     |                                                                                    | circuits using<br>nodal and<br>mesh analysis                                                     |  |
|                                                                                                                                                                                                              |                                                                                                   | IVI                                  | IDTERM EXAMINATION                | ON- 2.0 Hrs.                                                   |                                                                     |                                                                                    |                                                                                                  |  |
| EE431-ILO4: Analyze<br>and use power system<br>models based on nodal<br>admittance and<br>impedance matrices for<br>the analysis of large-<br>scale power networks.<br>(EE431-CO1, EE431-<br>CO2, EE431-CO5) | 4. Load flow analysis 4.1. Voltage Control 4.2. Neutral Grounding 4.3. Transients in Power System | 8.0 hrs.lec<br>/ 10.0 hrs.<br>lab    | Learning Module 4 Asynchronous    | Problem solving quiz on the load flow in the power system.     | 70% of the<br>students<br>shall have<br>a rating of<br>at least 3.0 | Videos online,<br>modules, e-<br>books,Multisi<br>m software,<br>and<br>worksheets | Core Value:<br>Committed<br>Sub-Value:<br>Perseverant<br>in learning<br>new concepts             |  |
| EE431-ILO5: Understand Positive Sequence, Negative & zero sequence system and fault analysis.(EE431-CO1, EE431-CO2, EE431-CO5)                                                                               | 5. Short circuit analysis and calculations 5.1. Symmetrical Components and Fault Calculations     | 8.0 hrs.lec<br>/ 10.0 hrs.<br>lab    | Learning Module 5<br>Asynchronous | Problem solving quiz on the fault current in the power system. | 70% of the<br>students<br>shall have<br>a rating of<br>at least 3.0 | Modules, e-<br>books,Multisi<br>m software,<br>and<br>worksheets                   | Core Value: Transformatio nal  Sub-Value: Optimistic in analysing first-order RL and RC circuits |  |



# Republic of the Philippines

# SURIGAO STATE COLLEGE OF TECHNOLOGY

Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 8 of 10           |

"For Nation's Greater Heights"

| EE431-ILO6:                                                                                        | 6. Power system                                                                                                           | 7.0 hrs.lec | Learning Module 6 | Designing the                         | 70% of the                                | Modules, e-                      | Core Value:                                                                            |  |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|---------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|--|
| Recommend what                                                                                     | protection:                                                                                                               | / 5.0 hrs.  | Asynchronous      | protection                            | students                                  | books, Multisi                   | Confidence                                                                             |  |
| protection device will be<br>used in the power<br>system.<br>(EE431-CO1, EE431-<br>CO2, EE431-CO5) | selection and coordination of protection system 6.1. Protective relays 6.2. Circuit Breakers 6.3. Insulation Coordination | lab         |                   | system of a<br>given power<br>system. | shall have<br>a rating of<br>at least 3.0 | m software,<br>and<br>worksheets | Sub-Value:<br>ability to<br>communicate<br>effectively to<br>professionals<br>and non- |  |
|                                                                                                    | and Overvoltage<br>Protection                                                                                             |             |                   |                                       | ^                                         |                                  | specialists alike through reports and presentations.                                   |  |
|                                                                                                    |                                                                                                                           |             | FINAL EXAMINATION | I = 2.0 Hrs.                          | 1                                         |                                  | presentations.                                                                         |  |

#### References:

Textbooks

J. Duncan Glover, Mulukutla S. Sarma& Thomas J. Overbye (2016), Power System Analysis & Design, 5<sup>th</sup> ed., Charles Alexander & Matthew Sadiku (2016). *Fundamentals of Electric Circuits*. 6<sup>th</sup> ed. McGraw-Hill Education William H. Hayt, Jr. et. al(2012). *Engineering Circuit Analysis*. 8<sup>th</sup> ed. McGraw-Hill

### Course Requirements:

- Laboratory Reports(CO-AT1)
- Problem Sets(CO-AT2)
- Group Project(CO-AT3)
- Quizzes and Assignments
- · Midterm and Final exams

### Course Evaluation:

Criteria

Lecture Grade



# Republic of the Philippines

### SURIGAO STATE COLLEGE OF TECHNOLOGY

Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

#### "For Nation's Greater Heights"

| × | Quizzesand online outputs/interaction (ILO-AT) | 20%  |
|---|------------------------------------------------|------|
| A | Performance Tasks (CO-AT)                      | 40%  |
| × | Major Exams (Midterm and Final)                | 40%  |
|   | TOTAL                                          | 100% |

Grade Computation:  $\frac{Midterm\ Grade + Final\ Grade}{2} = Average\ Grade$ 

| <b>Grade Point</b> | Description                                                                      |
|--------------------|----------------------------------------------------------------------------------|
| 1.0                | Excellent                                                                        |
| 1.5 - 1.1          | Very Good                                                                        |
| 2.0 - 1.6          | Highly Satisfactory                                                              |
| 2.5 - 2.1          | Good                                                                             |
| 2.9 - 2.6          | Satisfactory                                                                     |
| 3.0                | Passing                                                                          |
| 5.0                | Failed due to poor performance, absences, withdrawal without notice              |
| DRP                | Dropped with approved dropping slip                                              |
| INC                | Incomplete requirements but w/ passing class standing. INC is for non-graduating |
|                    | students only                                                                    |
| NG                 | No Grade                                                                         |

Source: SSCT Student Handbook

#### Course Policies:

- 1. Attendance shall be checked in every class session in the Google Meet. This is to monitor the absences incurred by the students in terms of the allowable number of absences for a course as stipulated in the Student Handbook.
- 2. During online classes, video camera shall be turned on all the time and microphone shall be turned off. The microphone shall be unmuted only if the student's name is called to participate in class discussion.
- 3. Major examinations in multiple-choice type shall be done online. For problem solving type, detailed solutions shall be written legibly in separate sheets of paper and shall be converted to pdf form prior to submission.
- 4. Cheating in major examinations which include attempts to defraud, deceive, or mislead the instructor in arriving at an honest assessment shall entail zero score.

| Document Code No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 9 of 10           |



Narciso St., Surigao City, Philippines, 8400 http://www.ssct.edu.ph

| Document Gode No. | FM-SSCT-ACAD-002  |
|-------------------|-------------------|
| Revision No.      | 00                |
| Effective Date    | 20 September 2018 |
| Page No.          | 10 of 10          |

"For Nation's Greater Heights"

- 5. Plagiarism which is a form of cheating that involves presenting the ideas or work of another as one's own work shall entail zero score.
- 6. Projects shall be submitted on or before the deadline. Students who submit unsatisfactory projects shall be given the chance to improve their works on the condition that they resubmit the revised outputs on the date set by the instructor. Non-submission of a project on the deadline shall entail zero score.
- 7. An INC grade shall be given to students who fail to submit the course requirements of at least 95% of the projects and quizzes or failure to take the major examinations.

### Revision History:

| Revision No. | Revised by                 | Date of Revision | Date of Implementation | Highlight of Revision                        |
|--------------|----------------------------|------------------|------------------------|----------------------------------------------|
| 1            | Engr. Vernon V. Liza       | August 2019      | August 2019            | Followed OBTL Format as per CMO #101 S. 2017 |
| 2            | Engr. Andy Bong F. Navarro | July 19, 2021    | August 23, 2021        | DACUM Workshop vis-à-vis CMO No. 101 S. 2017 |

|                | ~~~  | ~  |        |   |
|----------------|------|----|--------|---|
| ENGR. ANDY E   | BONG | F. | NAVARR | 0 |
| Guest Lecturer |      |    |        |   |

Date: 1-25-2622

Noted by:

Prepared by:

ENGR. ROBERT R. BACARRO, MECE, MBA
Dean, COLLEGE

Date: 1-2-202

Checked and reviewed by:

ENGR. VICENTE Z. DELANTE Program Chair, BSEE

Date: 1-28-2022

Recommended by:

RONITA E. TALINGTING, PhD

Campus Director

Date: 1-31 - 2022

Approved by:

EMMYLOU A. BORJA, EdD
VP for Academic Affairs

Date: 1-81-202\_



### Republic of the Philippines SURIGAO STATE COLLEGE OF TECHNOLOGY Narciso Street, Surigao City





August 18, 2021

DR. GREGORIO Z. GAMBOA, JR. SUC President III Surigao State College of Technology Surigao City

Sir:

Warm Greeting of Peace!

The conduct of "Workshop on OBE Syllabi Enhancement" was scheduled last August 3-6, 2021. However, the activity was postponed due to the Pre-Validation for Universityhood conducted by CHED Caraga and OIQAG last August 11, 2021.

Relative to this, the undersigned would like to seek approval from your end to reschedule the workshop following the stipulated schedule below:

August 24-25, 2021 - College of Engineering (CEIT) and College of Technology (COT)

August 26-27, 2021- College of Teacher Education (CTE), College of Arts and Sciences

(CAS) and Graduate School (GS)

Further, the undersigned would like to request that a memorandum shall be issued by your office indicating the new aforementioned schedule.

Deeply looking forward to your positive response on this request.

Thank you very much

Respectfully,

EMMYLOU A. BORJA, EdD

VP-Academic Affairs

Approved:

GREGORIO Z. GAMBOA, JR. EdD

SUC President III

Tel. Nos.: (086) 826-0135; (086) 231-7798

Email: surigaostatecollege@yahoo.com

URL: ssct edu ph



## Republic of the Philippines SURIGAO STATE COLLEGE OF TECHNOLOGY Narciso Street, Surigao City





# MEMORANDUM

REFERENCE NO.

SSCT - ADMIN-08-55, Series 2021

DATE

AUGUST 19, 2021

TO

(Please see attached file)

FROM

The COLLEGE PRESIDENT

SUBJECT

ATTENDANCE TO A 4-DAY WORKSHOP ON SYLLABI EHNANCEMENT FOR THE 1<sup>ST</sup> SEMESTER OF AY 2021-2022 AT THE SSCT, LEARNING RESOURCE CENTER ON

AUGUST 24 TO 27, 2021

Per approved request by Dr. Emmylou A. Borja, Vice President for Academic Affairs, you are hereby directed to participate on the aforementioned workshop on the following schedule.

August 24-25 2021

College of Engineering and Information

Technology (CEIT) and College of Technology

(COT)

August 26-27, 2021

College of Teacher Education (CTE), College of

Arts and Sciences (CAS) and Graduate School (GS)

NAME:

Expenses incident for external attendees will be charged against local school funds subject to usual accounting and auditing rules & regulations.

Please be guided accordingly.

GREGORIO Z. GAMBOA, Jr., Ed.D.

SUC President III

Tel. Nos.: (086) 826-0135; (086) 231-7798 Email: surigaostatecollege@yahoo.com

URL: ssct.edu.ph



# Republic of the Philippines SURIGAO STATE COLLEGE OF TECHNOLOGY Narciso Street, Surigao City





REFERENCE NO.

SSCT - ADMIN-08-55, Series 2021

### Workshop on Revision of Course Syllabi

College of Engineering and Information Technology (CEIT) and College of Technology (COT)- August 24-25, 2021

## CEIT (Across Campuses)

1. Engr. Ingrid Escabal

Engr. Darwin C. Mangca

3. Engr. Gracechell M. Pascua

4. Engr. Robert R. Bacarro

5. Dr. Virnille C. Francisco

6. Dr. Jessica Rose E. Fernandez

7. Archt. Lufre Potente

8. Archt. Marlon C. Solloso

9. Engr. Ritchie A. Reyna

10. Engr. Perfecto R. Ruaya, Jr.

11. Engr. Aldrich B. Calinawan

12. Dr. Froilan Jay E. Guiral

25. Dr. Aurea M. Madelo

26. Dr. Analyn S. Morite

27. Dr. Rosanne E. Andaluz

28. Dr. Unife O. Cagas

29. Dr. Alex E. Alvarez

30. Dr. Monalee A. Dela Cerna

31. Engr. Richard A. Badiola

32. Engr. Levi A. Corvera

13. Mr. Chrysler Van D. Conde

14. Shem L. Gonzales

15. Mr. Elwin S. Argana

16. Dr. Romy Jun A. Sunico

17. Mr. Rex C. Legaspi

18. Dr. Vrian Jay V. Ylaya

19. Ms. Alma Christie C. Reyna

20. Ms. Jovie M. Gallera

21. Engr. Federico A. Aves

22. Dr. Jerry I. Teleron

23. Engr. Vincente Z. Delante

24. Dr. Amor C. Montejo

33. Engr. Virne P. Portugues

34. Engr. Josephine V. Acido

35. Engr, Baldapan, Joselito S.

36. Engr. Lucilyn C. Borja

37. Engr. Conrado Jr. B. Delosa

38. Mr. Trashy P. Dumaicos

39. Mr. Crispin P. Noguerra

40. Dr. Teresita L. Toledo

41. Mr. Renz M. Buctuan

Tel. Nos.: (086) 826-0135; (086) 231-7798

Email: surigaostatecollege@yahoo.com

URL: ssct.edu.ph